Convergence Models of Genetic Algorithm Selection Schemes

نویسندگان

  • Dirk Thierens
  • David E. Goldberg
چکیده

We discuss the use of normal distribution theory as a tool to model the convergence characteristics of di erent GA selection schemes The models predict the proportion of optimal alleles in function of the number of generations when optimizing the bit counting function The selection schemes analyzed are proportionate selection tournament selec tion truncation selection and elitist recombination Simple yet accurate models are derived that have only a slight deviation from the experimen tal results It is argued that this small di erence is due to the build up of covariances between the alleles a phenomenon called linkage dise quilibrium in quantitative genetics We conclude with a brief discussion of this linkage disequilibrium

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Genetic Algorithms, Selection Schemes, and the Varying Effects of Noise

This paper analyzes the eeect of noise on diierent selection mechanisms for genetic algorithms. Models for several selection schemes are developed that successfully predict the convergence characteristics of genetic algorithms within noisy environments. The selection schemes mod-eled in this paper include proportionate selection, tournament selection, (,) selection, and linear ranking selection...

متن کامل

Analysis of Selection Schemes for Solving Job Shop Scheduling Problem Using Genetic Algorithm

Scheduling problems have the standard consideration in the field of manufacturing. Among the various types of scheduling problems, the job shop scheduling problem is one of the most interesting NP-hard problems. As the job shop scheduling is an optimization problem, Genetic algorithm was selected to solve it In this study. Selection scheme is one of the important operators of Genetic algorithm....

متن کامل

Combination of Feature Selection and Learning Methods for IoT Data Fusion

In this paper, we propose five data fusion schemes for the Internet of Things (IoT) scenario,which are Relief and Perceptron (Re-P), Relief and Genetic Algorithm Particle Swarm Optimization (Re-GAPSO), Genetic Algorithm and Artificial Neural Network (GA-ANN), Rough and Perceptron (Ro-P)and Rough and GAPSO (Ro-GAPSO). All the schemes consist of four stages, including preprocessingthe data set ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994